首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   54413篇
  免费   10525篇
  国内免费   10579篇
测绘学   4267篇
大气科学   6536篇
地球物理   12111篇
地质学   29451篇
海洋学   7341篇
天文学   3451篇
综合类   3535篇
自然地理   8825篇
  2024年   146篇
  2023年   667篇
  2022年   1703篇
  2021年   2137篇
  2020年   2034篇
  2019年   2298篇
  2018年   1909篇
  2017年   2209篇
  2016年   2191篇
  2015年   2489篇
  2014年   3147篇
  2013年   3551篇
  2012年   3228篇
  2011年   3516篇
  2010年   3053篇
  2009年   3664篇
  2008年   3730篇
  2007年   3792篇
  2006年   3748篇
  2005年   3405篇
  2004年   2996篇
  2003年   2791篇
  2002年   2471篇
  2001年   2199篇
  2000年   2070篇
  1999年   1838篇
  1998年   1605篇
  1997年   1226篇
  1996年   1006篇
  1995年   914篇
  1994年   854篇
  1993年   719篇
  1992年   529篇
  1991年   439篇
  1990年   305篇
  1989年   249篇
  1988年   206篇
  1987年   114篇
  1986年   73篇
  1985年   64篇
  1984年   45篇
  1983年   28篇
  1982年   20篇
  1981年   21篇
  1980年   20篇
  1979年   7篇
  1978年   35篇
  1977年   11篇
  1971年   5篇
  1954年   11篇
排序方式: 共有10000条查询结果,搜索用时 62 毫秒
991.
庞加欣  王灵桂 《热带地理》2019,39(6):911-918
韩国“新北方政策”与“一带一路”倡议的对接合作为中韩两国带来了重要发展机遇。文章主要探讨韩国“新北方政策”的内涵及其与“一带一路”倡议对接的进展、机遇与挑战,得出双方对接的合作机遇主要在政策沟通、设施联通、贸易投资和资金融通4个方面,同时也存在着制度性风险、地缘风险和投资合作风险的三大挑战。在具体对接过程中,产业、金融、物流3个领域可能成为突破口。  相似文献   
992.
根据长山群岛 1965-2016 年渔业统计资料,分析长山群岛海域主要捕捞渔获物产量、平均营养级 (Mean trophic level, MTL)、渔业均衡指数 (Fishing in balance index,FiB) 年际变化,探讨其海洋渔业资源利用状况,并利用小波分析方法研究52年来渔获物 MTL 周期变化特征。研究表明: (1) 长山群岛捕捞产量、MTL 和 FiB 指数呈阶段性变化; (2) 长山群岛渔业资源开发经历初期开发、扩张捕捞、过度捕捞、资源破坏等四个阶段,渔业资源环境正在逐渐恶化;(3) 受人类捕捞活动影响,MTL 在 15~19 年和 24~34 年两种时间尺度下呈周期波动,30 年为第一主周期,17 年为第二主周期。长山群岛渔业资源破坏日益严重,未来几年平均营养级将呈下降趋势。为防止渔业资源进一步衰退,应加强捕捞活动管理力度,落实海洋渔业资源保护制度;完善预警机制,构建海洋渔业资源监测系统;同时应积极调整长山群岛渔业产业结构,提高资源产出效率.  相似文献   
993.
Stream water temperature plays a significant role in aquatic ecosystems where it controls many important biological and physical processes. Reliable estimates of water temperature at the daily time step are critical in managing water resources. We developed a parsimonious piecewise Bayesian model for estimating daily stream water temperatures that account for temporal autocorrelation and both linear and nonlinear relationships with air temperature and discharge. The model was tested at 8 climatically different basins of the USA and at 34 sites within the mountainous Boise River Basin (Idaho, USA). The results show that the proposed model is robust with an average root mean square error of 1.25 °C and Nash–Sutcliffe coefficient of 0.92 over a 2‐year period. Our approach can be used to predict historic daily stream water temperatures in any location using observed daily stream temperature and regional air temperature data.  相似文献   
994.
A hydraulic invariance (HI)‐based methodology was developed as a tool to support implementation of storm flow control measures into land use master plans (LUMPs) for urban catchments. The methodology is based on the use of simple hydrologic analysis to compare predevelopment and postdevelopment catchment flow release scenarios. Differently from previous literature examples, for which the parcel scale is usually considered for the analysis, HI was pursued assuming the LUMP areas of transformation as the basic units for assigning storm water control measures in the form of flow release restrictions. The methodology was applied to a case study catchment in the southern part of the City of Catania (Italy), for which the LUMP re‐design has been recently proposed. Simulations were run based on the use of the EPA‐Storm Water Management Model and allowed deriving flow release restrictions in order to achieve HI at the subcatchment level for design events of different return period.  相似文献   
995.
Integrated hydrological models are usually calibrated against observations of river discharge and piezometric head in groundwater aquifers. Calibration of such models against spatially distributed observations of river water level can potentially improve their reliability and predictive skill. However, traditional river gauging stations are normally spaced too far apart to capture spatial patterns in the water surface, whereas spaceborne observations have limited spatial and temporal resolution. Unmanned aerial vehicles can retrieve river water level measurements, providing (a) high spatial resolution; (b) spatially continuous profiles along or across the water body, and (c) flexible timing of sampling. A semisynthetic study was conducted to analyse the value of the new unmanned aerial vehicle‐borne datatype for improving hydrological models, in particular estimates of groundwater–surface water (GW–SW) interaction. Mølleåen River (Denmark) and its catchment were simulated using an integrated hydrological model (MIKE 11–MIKE SHE). Calibration against distributed surface water levels using the Differential Evolution Adaptive Metropolis algorithm demonstrated a significant improvement in estimating spatial patterns and time series of GW–SW interaction. After water level calibration, the sharpness of the estimates of GW–SW time series improves by ~50% and root mean square error decreases by ~75% compared with those of a model calibrated against discharge only.  相似文献   
996.
Slope stability optimization, in the presence of a band of a weak layer between two strong layers, is accounted for in complicated geotechnical problems. Classical optimization algorithms are not suitable for solving such problems as they need a proper preliminary solution to converge to a valid result. Therefore, it is necessary to find a proper algorithm which is capable of finding the best global solution. Recently a lot of metaheuristic algorithms have been proposed which are able to evade local minima effectively. In this study four evolutionary algorithms, including well‐known and recent ones, such as genetic algorithm, differential evolution, evolutionary strategy and biogeography‐based optimization (BBO), are applied in slope stability analysis and their efficiencies are explored by three benchmark case studies. Result show BBO is the most efficient among these evolutionary algorithms and other proposed algorithms applied to this problem. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
997.
Many large rivers around the world no longer flow to their deltas, due to ever greater water withdrawals and diversions for human needs. However, the importance of riparian ecosystems is drawing increasing recognition, leading to the allocation of environmental flows to restore river processes. Accurate estimates of riparian plant evapotranspiration (ET) are needed to understand how the riverine system responds to these rare events and achieve the goals of environmental flows. In 2014, historic environmental flows were released into the Lower Colorado River at Morelos Dam (Mexico); this once perennial but now dry reach is the final stretch to the mighty Colorado River Delta. One of the primary goals was to supply native vegetation restoration sites along the reach with water to help seedlings establish and boost groundwater levels to foster the planted saplings. Patterns in ET before, during, and after the flows are useful for evaluating whether this goal was met and understanding the role that ET plays in this now ephemeral river system. Here, diurnal fluctuations in groundwater levels and Moderate Resolution Imaging Spectroradiometer (MODIS) data were used to compare estimates of ET specifically at 3 native vegetation restoration sites during 2014 planned flow events, and MODIS data were used to evaluate long‐term (2002–2016) ET responses to restoration efforts at these sites. Overall, ET was generally 0–10 mm d?1 across sites, and although daily ET values from groundwater data were highly variable, weekly averaged estimates were highly correlated with MODIS‐derived estimates at most sites. The influence of the 2014 flow events was not immediately apparent in the results, although the process of clearing vegetation and planting native vegetation at the restoration sites was clearly visible in the results.  相似文献   
998.
Two primary concerns in performing watershed overland flow routing are the numerical instability and computational efficiency. The stability of executing an explicit scheme has to be maintained by observing the Courant–Friedrich–Lewy criterion, which is adopted to confirm that the numerical marching speed is larger than the wave celerity. Moreover, there is another criterion of time step devised in previous studies to avoid back‐and‐forth refluxing between adjacent grids. The situation of refluxing usually occurs on flat regions. In light of this, the selection of a small time increment to honor both restrictions simultaneously is believed to decrease the computational efficiency in performing overland flow routing. This study aims at creating a robust algorithm to relax both restrictions. The proposed algorithm was first implemented on a one‐dimensional overland plane to evaluate the accuracy of the numerical result by comparing it with an analytical solution. Then, the algorithm was further applied to a watershed for 2D runoff simulations. The results show that the proposed integrated algorithm can provide an accurate runoff simulation and achieve satisfactory performance in terms of computational speed.  相似文献   
999.
Understanding the dynamics and mechanisms of soil water movement and solute transport is essential for accurately estimating recharge rates and evaluating the impacts of agricultural activities on groundwater resources. In a thick vadose zone (0–15 m) under irrigated cropland in the piedmont region of the North China Plain, soil water content, matric potential, and solute concentrations were measured. Based on these data, the dynamics of soil water and solutes were analysed to investigate the mechanisms of soil water and solute transport. The study showed that the 0–15‐m vadose zone can be divided into three layers: an infiltration and evaporation layer (0–2 m), an unsteady infiltration layer (2–6 m), and a quasi‐steady infiltration layer (6–15 m). The chloride, nitrate, and sulphate concentrations all showed greater variations in the upper soil layer (0–1 m) compared to values in the deep vadose zone (below 2 m). The average concentrations of these three anions in the deep vadose zone varied insignificantly with depth and approached values of 125, 242, and 116 mg/L. The accumulated chloride, sulphate, and nitrate were 2,179 ± 113, 1,760 ± 383, and 4,074 ± 421 kg/ha, respectively. The soil water potential and solute concentrations indicated that uniform flow and preferential flow both occurred in the deep vadose zone, and uniform flow was the dominant mechanism of soil water movement in this study. The piston‐like flow velocity of solute transport was 1.14 m per year, and the average value of calculated leached nitrate nitrogen was 107 kg/ha?year below the root zone. The results can be used to better understand recharge processes and improve groundwater resources management.  相似文献   
1000.
Stemflow (Sf) measurements in tropical rain and montane forests dominated by large trees rarely include the understory and small trees. In this study, contributions of lower (1‐ to 2‐m height) and upper (>2‐m height and <5‐cm diameter at breast height [DBH]) woody understory, small trees (5 < DBH < 10 cm), and canopy trees (>10‐cm DBH) to Sf per unit ground area (Sfa) of a Mexican lower montane cloud forest were quantified for 32 days with rainfall (P) during the 2014 wet season. Rainfall, stemflow yield (Sfy), vegetation height, density, and basal area were measured. Subsequently, stemflow funneling ratios (SFRs) were calculated, and three common methods to scale up Sfy from individual trees to the stand level (tree‐Sfy correlation, P‐Sfy correlation, and mean‐Sfy extrapolation) were used to calculate Sfa. Understory woody plants, small trees, and upper canopy trees represented 96%, 2%, and 2%, respectively, of the total density. Upper canopy trees had the lowest SFRs (1.6 ± 0.5 Standard Error (SE) on average), although the lower understory had the highest (36.1 ± 6.4). Small trees and upper understory presented similar SFRs (22.9 ± 5.4 and 20.2 ± 3.9, respectively). Different Sf scaling methods generally yielded similar results. Overall Sfa during the study period was 22.7 mm (4.5% of rainfall), to which the understory contributed 70.1% (15.9 mm), small trees 10.6% (2.4 mm), and upper canopy trees 19.3% (4.4 mm). Our results strongly suggest that for humid tropical forests with dense understory of woody plants and small trees, Sf of these groups should be measured to avoid an underestimation of overall Sf at the stand level.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号